

Focused Ultrasound Therapy Using Robotic Approaches

Public Presentation 2014, NOVEMBER

Project ID: 611963

Objective: ICT-2013.2.1 Robotics, Cognitive Systems & Smart Spaces, Symbiotic Interaction

PROJECT COORDINATOR: **ARIANNA MENCIASSI** (SSSA) PROJECT OFFICER: **MICHEL BROCHARD** (EU Commission)

Image Guided Therapy

PISA

10LA

IBS_{MM}

GRUPPO

MASTERS OF INVENTION

Project acronym: FUTURA
Project title: Focused Ultrasound Therapy Using Robotic Approaches
Funding scheme: FP7-ICT-Challenge 2
Grant Agreement number: 611963
Start date of project: 01/11/2013
Duration: 36 months
Project web site: www.futuraproject.eu
Project Budget: total cost – 3622659€
EU contribution - 2779866

Project Coordinator: Prof. Arianna Menciassi Medical Coordinator: Prof. Andreas Melzer

> FUTURA - FP7-ICT-2013-10-611963 PUBLIC PRESENTATION

Grant agreement for "Collaborative project" Annex I - "Description of Work" Presch austen: "Froatel Utational Theory Using Robotic Agressities " Grant Agreement Inc. 611560 Version date 2013/07-01

FUTURA Consortium

Partner	Research role/Activity in the Consortium	Main WPs of activity	Expertise
SSSA	Coordination of the project. Management activities, definition of technical specifications, obstacles perception, robotic platform registration, robot positioning, robot- patient interfaces	WP1, WP2, WP3, WP4, WP5, WP6, WP7, WP8, WP9, WP10	Robotics, biomechatronics, system design, biomedical engineering, medical robotics.
	Medical coordination . Medical applications, clinical specifications, FUS, therapy verification, interventional protocol, medical assessment, pre-clinical and clinical studies	WP1, WP2, WP4, WP5, WP8, WP9, WP10	Development of diagnostic and therapeutic Ultrasound devices and applications, US procedures, models and organ mimicking phantoms
IGT	FUS transducer design, 3D-US therapy monitoring and verification, therapy planning	WP1, WP2, WP4, WP5, WP7, WP8, WP9, WP10	Pre-clinical and clinical MRgFUS devices; Acoustic measurements, transducer design, phased array electronics.
CAMELOT	Machine learning, automation of therapy planning and monitoring, multimodal image fusion	WP1, WP2, WP4, WP5, WP6, WP8, WP10	Machine Learning, Medical Image Analysis, High-Performance Computing; Lean Software and GUI Development.
SM	Robotic manipulators design, collision avoidance between robotic manipulators, obstacles perception and avoidance, safety strategy, validation of safety standards and procedures	WP1, WP2, WP3, WP4, WP5, WP7, WP8, WP10	Robotics; Mechatronics; System design, control and automation; Mechanical, electronic, biomedical and software Engineering.
IBSmm	System integration and benchmarking with existing solution, safety regulatory	WP1, WP2, WP7, WP8, WP9, WP10	Embedded electronics design; Medical Imaging; Image guided surgery; Medical devices engineering; DICOM implementation; Regulatory

SSSA and UNIVDUN: University

EUROPEAN

CAMELOT, SM, IBSmm: SMEs

FUTURA - FP7-ICT-2013-10-611963

PUBLIC PRESENTATION

Focused Ultrasound Therapy Using Robotic Approaches -FUTURA

FUTURA - FP7-ICT-2013-10-611963 PUBLIC PRESENTATION

Focused Ultrasound Surgery: clinically approved machines

MRgFUS

ExAblate, Insightec, Israel

Sonaleeve, Philips, USA

Sonablate-500, Focus Surgery, USA

Model-JC, Chongqing HAIFU™, China

USgFUS

Focused Ultrasound Surgery (FUS)

MRgFUS

- Advantages
 - High soft tissue contrast
 - Good for planning
 - ✓ Clear 3D images
 - High sensitivity for tumor detection
 - Thermometry
 - ✓ Confirm targeting with sublethal heating
 - ✓ Follow lethal exposures to measure response
- Disadvantages
 - High cost
 - Labor intensive
 - Slow imaging

ExAblate, Insightec, Israel

NOVEMBER 2014

Sonaleeve, Philips, USA

USgFUS

- Advantages
 - Low cost
 - Real time
 - High resolution
 - Verify the acoustic window
- Disadvantages
 - (Usually) only 2D
 - Images are harder to interpret
 - Temperature monitoring not yet available
 - Gas bubbles and coagulated tissue distort the images

Model-JC, Chongqing HAIFU™, China

Sonablate-500, Focus Surgery, USA

FUTURA - FP7-ICT-2013-10-611963 PUBLIC PRESENTATION

FUTURA expected outcomes

The goal of FUTURA project is to design, develop and assess an innovative robotic platform with cognitive capabilities for the delivery of non-invasive therapy by means of High Intensity Focused Ultrasounds, under Ultrasounds guidance.

> Robustness, accuracy, precision, flexibility and reliability of therapy

Calibration procedure:FinalACCURACY lower thanguarabout 1mm in position andvolu0.5° in orientationshap

Final targeting **ACCURACY** will be guaranteed **within** the **HIFU focal spot** volumetric dimensions (i.e. a cylindrical shape of about **1.5mmx7mm**)

>Widespread **diffusion of FUS** into routine clinical applications (starting from specific clinical targets)

Safety and acceptability of the robotic platform into the surgical rooms

FUTURA objectives from Annex I

- The goal of FUTURA is to design, develop and assess an innovative robotic platform for the delivery of non-invasive therapy by means of High Intensity Focused Ultrasounds.
- The expected contribution is to advance robustness, accuracy, precision and reliability of the therapy, as well as improving safety and acceptability of multifunctional robotic platforms in the surgical room.
 - **Objective 1:** Merging surgical robotics, non-invasive ultrasound therapy and machine learning for medical imaging.
 - **Objective 2:** Development of a multifunctional robotic surgical platform able to perform different tasks and which possesses cognitive capabilities such as collision avoidance and obstacle perception.
 - **Objective 3:** Improvement of planning and monitoring of Ultrasound therapy.
 - **Objective 4:** Improvement of therapy delivery.

Therapeutic module HIFU transducer for delivering therapy.

Monitoring module

1 2D US probe confocal to the HIFU transducer for monitor therapy and 1 3D US probe mounted on the second robotic arm to guarantee a continuous adjustment of robots position.

Sensor module Proprioceptive and exteroceptive sensors for the implementation of dedicated control strategies, platform registration, monitoring robotpatient interactions and environment control.

Robotic module

2 serial manipulators matching technical and medical specifications.

2014, November 26th Pontedera, Italy

FUTURA - FP7-ICT-2013-10-611963 FIRST REVIEW MEETING

FUTURA Platform: Main features

In order to combine non-invasive features (US+HIFU) with accuracy, FUTURA focuses on:

- Multimodal reconstruction aspects
- $\hfill\square$ Sensors fusion algorithms and safety strategies
- □ Machine learning implementations

FUTURA Contacts

In case of questions please contact:

FUTURA Project Coordinator

Prof. Arianna Menciassi The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa (Italy) a.menciassi@sssup.it

+39 050 883 400/418

FUTURA Project Manager

Dr. Selene Tognarelli The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa (Italy) s.tognarelli@sssup.it +39 050 883 096

www.futuraproject.eu

2014, November 26th Pontedera, Italy FUTURA - FP7-ICT-2013-10-611963 FIRST REVIEW MEETING